
J
H
E
P
0
9
(
2
0
0
8
)
1
3
5

Published by Institute of Physics Publishing for SISSA

Received: August 25, 2008

Accepted: September 21, 2008

Published: September 30, 2008

Semi-numerical power expansion of Feynman integrals

Volker Pilipp

Institute of Theoretical Physics, Universität Bern,

Sidlerstrasse 5, CH-3012 Bern, Switzerland

E-mail: volker.pilipp@itp.unibe.ch

Abstract: I present an algorithm based on sector decomposition and Mellin-Barnes tech-

niques to power expand Feynman integrals. The coefficients of this expansion are given in

terms of finite integrals that can be calculated numerically. I show in an example the benefit

of this method for getting the full analytic power expansion from differential equations by

providing the correct ansatz for the solution. For method of regions the presented algorithm

provides a numerical check, which is independent from any power counting argument.

Keywords: NLO Computations, QCD.

c© SISSA 2008

mailto:volker.pilipp@itp.unibe.ch
http://jhep.sissa.it/stdsearch


J
H
E
P
0
9
(
2
0
0
8
)
1
3
5

Contents

1. Introduction 1

2. Algorithm 2

3. Example: power expansion of Feynman integrals by differential equation

techniques 6

4. Conclusions 9

1. Introduction

For power expanding Feynman integrals several methods exist, where all of them have

their limitations. Mellin-Barnes techniques provides a very general method to obtain all

powers [1, 2]. This method however fails if the integrals are getting too complex. On the

other hand method of regions [2 – 5] is a convenient way to obtain the leading power, whereas

it is getting rather complicated for higher powers because of the many contributing regions

and because it is difficult to automatize. Furthermore it is a very non-trivial task to make

sure that one has not forgotten or counted twice any region. However in the Euclidean

limit, where no collinear divergences arise, automatizations exist, which rely on graph

theory [6, 7]. Another way to expand Feynman integrals, which has been proposed and

worked out in [8 – 11], is based on differential equations. Differential equation techniques,

which has been proposed first in [12], is easy to automatize in a computer algebra system.

This makes it a convenient method to obtain subleading powers, whereas the leading power

is in most cases needed as an input like a boundary condition. Another limitation is the fact

that this method relies on a correct ansatz in terms of powers of the expansion parameter.

However it is a priori not obvious which powers of the expansion parameter occur (e.g.

only integer powers or also half-integer powers).

In the present paper I present a semi-numerical method, that provides the power

expansion of Feynman integrals by giving explicit expressions of the expansion coefficients

in form of finite integrals the can be solved numerically. In particular this method gives the

contributing powers of the expansion parameter, from where one can read off the correct

ansatz to solve the differential equations that determine the set of Feynman integrals.

The algorithm that is worked out in the present paper combines sector decomposi-

tion [13 – 16] with Mellin-Barnes techniques. It is completely independent from any power

counting argument such that it can be used as a cross check for method of regions. This

is very useful in cases, where method of regions becomes involved because of many con-

tributing regions.
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The paper is organized as follows. In section 2 the algorithm is explained in detail.

In section 3 I apply this algorithm to a set of two Feynman integrals, that are power

expanded by differential equation techniques, where the leading powers are obtained by

method of regions. I will show explicitly how this algorithms gives the correct ansatz for

the differential equations and provides a non-trivial check for method of regions.

2. Algorithm

We follow the steps of section 2 of [13]. We start with a L-Loop Feynman integral

G =

∫ L
∏

i=1

dDki

(2π)D
1

P1 . . . PN
(2.1)

which using the Feynman parameterization

1

P1 . . . PN
= Γ(N)

∫ 1

0
dNx

δ
(

1 −∑N
n=1 xn

)

(x1P1 + · · · + xNPN )N
(2.2)

can be cast into the form:

G = Γ(N)

∫

dNx δ(1−
N
∑

n=1

xn)

∫ L
∏

i=1

dDki

(2π)D





L
∑

j,l=1

kj · klMjl − 2

L
∑

j=1

kj · Qj + J





−N

. (2.3)

We define D = 4 − 2ǫ as usual. After performing the integration over the loop momenta

we obtain:

G = (−1)N
(

i

(4π)D/2

)L

Γ(N − LD/2)

∫

dNx δ(1 −
N
∑

n=1

xn)
UN−(L+1)D/2

FN−LD/2
, (2.4)

where

F = − det(M)



J −
L
∑

j,l=1

Qj · QlM
−1
jl



 (2.5)

and

U = det(M). (2.6)

Let us assume (2.5) contains the parameter λ, in which we want to expand (2.3). Using

the Mellin-Barnes representation [2]

1

(X1 + X2)x
=

1

Γ(x)

1

2πi

∫ i∞

−i∞
ds Γ(−s)Γ(s + x)Xs

1X−s−x
2 , (2.7)

where the integration contour over s has to be chosen such that

−x < ℜ(s) < 0,
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we modify (2.4) in the following way

G =(−1)N
(

i

(4π)D/2

)L 1

2πi

∫ i∞

−i∞
ds λsΓ(−s)Γ(s + N − LD/2)

×
∫

dNx δ(1 −
N
∑

n=1

xn)UN−(L+1)D/2F s
1 F

−s−N+LD/2
2 ,

(2.8)

where

F = λF1 + F2. (2.9)

The main idea behind the procedure below is the following: By closing the integration path

to the right hand side of the imaginary axis we sum up all the residua on the positive real

axis and obtain an expansion in λ. Powers of ln λ appear because of poles of order higher

than one and because of terms of the form λA−Bǫ in the expansion in λ. These terms turn

after expanding in ǫ into powers of ln λ.

We continue with part I and II of [13]. First we split the integral over the Feynman

parameters into
∫

dNx =

N
∑

l=1

∫

dNx

N
∏

j=1

j 6=l

θ(xl − xj) (2.10)

and integrate out the δ-function by the substitution

xj =











xltj j < l

xl j = l

xltj−1 j > l

(2.11)

such that we obtain

G = (−1)N
(

i

(4π)D/2

)L 1

2πi

∫ i∞

−i∞
ds λsΓ(−s)Γ(s + N − LD/2)

N
∑

l=1

∫ 1

0
dN−1t Gl, (2.12)

where

Gl = U
N−(L+1)D/2
l F s

1,lF
−s−N+LD/2
2,l (2.13)

is obtained by the substitution (2.11). In (2.12) the integration over small t leads to poles

in s. This behavior is made explicit, if we follow the steps of Part II of [13]: Look for a

minimal set {tα1 , . . . , tαr} such that Ul, F1,l or F2,l vanish, if these parameters are set to

zero. We decompose the integral into r subsectors

∫ 1

0
dN−1t =

∫ 1

0
dN−1t

r
∑

k=1

r
∏

j=1

j 6=k

θ(tαk
− tαj

) (2.14)

and substitute

tαj
→
{

tαk
tαj

j 6= k

tαk
j = k

, (2.15)
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which leads to the Jacobian factor tr−1
αk

. Now we are able to factorize out tαk
from Ul, F1,l

or F2,l. After repeating these steps, until Ul, F1,l and F2,l contain terms that are constant

in ~t, we end up with integrals over the Feynman parameters of the form

N
∑

l=1

∑

k

∫ 1

0
dN−1t





N−1
∏

j=1

t
Aj−Bjǫ−Cjs
j



U
N−(L+1)D/2
lk F s

1,lkF
−s−N+LD/2
2,lk , (2.16)

where Ulk, F1,lk and F2,lk contain terms that are constant in ~t. The procedure above can in

principal lead to infinite loops. This problem was addressed in [17, 18], where algorithms

are proposed that avoid these endless loops by choosing appropriate subsectors. I have not

yet faced any endless loop in the problems I dealt with. However one should keep in mind

that they can occur and adapt the implementation of the algorithm if needed.

From (2.16) we can read off that the poles in s are located at:

sjn =
1 + n + Aj − Bjǫ

Cj
, (2.17)

where n ∈ N0. Eq. (2.17) becomes clear if one Taylor expands in (2.16) the terms outside

the brackets with respect to tj and performs the integration.

In (2.12) we have to choose the contour of the integration over s such that the inte-

gration over the Feynman parameters tj converges. This leads to the condition

Aj − Bjǫ − Cjℜ(s) > −1 ∀j. (2.18)

The poles in (2.17) that have to be taken into account are those that are located on the

right hand side of the integration contour, i.e.

ℜ(s) < sjn. (2.19)

From (2.17) and (2.18) we conclude that (2.19) is fulfilled if and only if Cj > 0.

In the next step we calculate the residue of (2.16) at sjn. We write the k’th Feynman

integral in the form
∫ 1

0
dtk t

A′−B′ǫ−C′(s−sjn)
k I(tk, s) (2.20)

and note that this term is singular in s − sjn if and only if

B′ = 0 and A′ ≤ −1. (2.21)

So following Part III of [13] we expand I(tk, s) around tk = 0 and obtain

I(tk, s) =

−A′−1
∑

p=0

I(p)(s)
tpk
p!

+ R(tk, s), (2.22)

with a rest term R(tk, s) = O(t−A′

), such that (2.20) becomes

−A′−1
∑

p=0

1

A′ + 1 + p − C ′(s − sjn)

I(p)(s)

p!
+

∫ 1

0
dtk t

A′−C′(s−sjn)
k R(tk, s), (2.23)
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where we used that B′ = 0. We repeat this procedure for all k where condition (2.21) is

fulfilled. The remaining integrals do not diverge for s = sjn. So it is save to expand them

around s − sjn and we can easily calculate the residue at s = sjn.

What is left is to calculate the Laurent expansion in ǫ. From the previous procedure

we obtain terms of the form

∫ 1

0
dnt

(

∏

t
A′′

j −B′′

j ǫ

j (ln tj)
αj

)

I(~t, ǫ) (2.24)

The logarithms (ln tj)
αj arise from taking the residues of terms of the form

t
−C′(s−sjn)

j

(s−sjn)m with

m ≥ 2. In (2.24) we wrote these logarithms explicitly such that we can expand I(~t, ǫ)

around tj = 0. The poles in ǫ in (2.24) originate from integrals

∫ 1

0
dtj t

A′′

j −B′′

j ǫ

j (ln tj)
αjI(tj, ǫ) (2.25)

with A′′
j ≤ −1. Repeating the procedure above we expand

I(tj, ǫ) =

−A′′

j −1
∑

p=0

I(p)(ǫ)
tpj
p!

+ R(tj, ǫ) (2.26)

and obtain for (2.25)

−A′′

j −1
∑

p=0

(−1)αj (αj + 1)!

(1 + p + A′′
j − B′′

j ǫ)αj+1

I(p)(ǫ)

p!
+

∫ 1

0
dtj t

A′′

j −B′′

j ǫ

j (ln tj)
αj R(tj, ǫ). (2.27)

All the remaining integrals over tj are finite and can in principle be calculated numerically.

Finally the original integral G in (2.3) obtains the form

G =
∑

i,m,n

ǫiλm(ln λ)nIi,m,n, (2.28)

where the Ii,m,n contain finite integrals that can be numerically evaluated. The logarithms

(ln λ)n arise both due to poles of higher order in the Mellin-Barnes parameter and to the

expansion in ǫ from terms of the form λǫ/ǫn. Depending on the values of Cj in (2.17) the

sum over m does not only run over integer numbers but also over numbers of the form

1 + n + Aj

Cj
,

where n is integer. I stress that even if a numerical evaluation of the integrals Ii,m,n is not

possible, we can obtain non-trivial statements about the power expansion of G from (2.28)

together with (2.17). That is to say (2.17) gives us information about the possible powers of

λ e.g. we know if we only get integer powers or also powers of
√

λ. And from (2.28) we can

read off up to which power ln λ appears. As we will see in the next section this information

will prove to be useful to obtain the power expansion by means of differential equations.
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l

k + p

k + l

Figure 1: Sunrise diagrams. The thick line denotes a propagator of mass M , while the thin lines

stand for mass m. The double line denotes that the propagator is to be taken squared.

3. Example: power expansion of Feynman integrals by differential equa-

tion techniques

The idea to get the expansion of Feynman integrals by differential equations has been

proposed and worked out in [8 – 11]. By the following example we will see that the algorithm

shown in the last section will give us the correct ansatz to solve the given system of

differential equations and help us with the calculation of the initial conditions. We start

with the integrals given by figure 1, where we assume p2 = M2:

I1 =

∫

dDk

(2π)D
dDl

(2π)D
1

(k2 + 2k · p) ((k + l)2 − m2) (l2 − m2)

I2 =

∫

dDk

(2π)D
dDl

(2π)D
1

(k2 + 2k · p) ((k + l)2 − m2) (l2 − m2)2
. (3.1)

Let us assume that we want to expand these integrals in λ = m2/M2 and need the result

up to order ǫ. For simplicity let us also set M2 = 1 and m2 = λ. Using integration-by-parts

identities [19 – 21], we get the following differential equations for I1 and I2:

d

dλ
I1 = h11I1 + h12I2 + g1

d

dλ
I2 = h21I1 + h22I2 + g2 (3.2)

with

h =

(

0 2
1

2λ(1−λ)
1−3λ

2λ(1−λ)

)

+ ǫ

(

0 0

− 7
4λ(1−λ)

−2+4λ
λ(1−λ)

)

+ ǫ2

(

0 0

0 3
2λ(1−λ)

)

(3.3)

and

g1 = 0

g2 =
(1 − ǫ)2

4λ2(1 − λ)

[ ∫

dDk

(2π)D
dDl

(2π)D
1

((k + l)2 − λ) (l2 − λ)

−
∫

dDk

(2π)D
dDl

(2π)D
1

(k2 + 2k · p) (l2 − λ)

]

=
1

(4π)D
Γ(ǫ)2

λ1−2ǫ − λ−ǫ

4λ(1 − λ)
, (3.4)
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where (3.3) and (3.4) are exact in λ and ǫ. By defining

Iα =
∑

i,j,k

I
(j,k)
α,i ǫiλj(ln λ)k

hαβ =
∑

i,j

h
(j)
αβ,iǫ

iλj

gα =
∑

i,j,k

g
(j,k)
α,i ǫiλj(ln λ)k (3.5)

(3.2) becomes

0 = (j + 1)I
(j+1,k)
α,i + (k + 1)I

(j+1,k+1)
α,i −

∑

β=1,2

2
∑

i′=0

j
∑

j′=−1

h
(j′)
αβ,i′I

(j−j′,k)
β,i−i′ − g

(j,k)
α,i . (3.6)

In (3.5) we have not yet specified which values the summation index j takes and up to

which maximum value the finite sum over k runs. By implementing the steps of the last

section, which led to (2.17), in a computer algebra system we obtain from (2.17) that I1

comes with the powers of λ

λn, λn+1−ǫ, λ
n+3

2
−2ǫ (3.7)

and I2 with

λn, λn−ǫ, λ
n+1

2
−2ǫ, (3.8)

where n ∈ N0. From (3.7) and (3.8) we read off that j takes the values 0, 1/2, 1, . . .. In (3.6)

integer-valued and half-integer-valued j do not mix. So we would have missed powers of√
λ, if we had made the näıve ansatz that I1,2 only come with integer powers of λ. Now

one could argue that
√

λ is already contained in the sum over ln λ. However in order to

solve (3.6) we have to assume that there exists kmax such that I
(j,k)
α,i = 0 for all k > kmax.

A computer algebra analysis of the algorithm in the previous section tells us that in our

special case kmax = 3.

Solving (3.6) up to O(ǫ) we note that we need I
(0,0)
1,i and I

( 1
2
,0)

2,i as initial conditions,

which can be obtained by method of regions [2 – 5]. In the case of I
(0,0)
1,i we note that only

the region participates where both integration momenta are hard:

kµ = O(1) and lµ = O(1). (3.9)

In this region we obtain

∫

dDk

(2π)D
dDl

(2π)D
1

(k2 + 2k · p)(k + l)2l2
=

1

(4π)D
Γ(−1 + 2ǫ)Γ(ǫ)Γ(1 − ǫ)2Γ(3 − 4ǫ)

Γ(2 − 2ǫ)Γ(3 − 3ǫ)
, (3.10)

which is the leading power of I1. For I
( 1
2
,0)

2,i we need the region where both k and l are soft,

i.e.

kµ = O(
√

λ) and lµ = O(
√

λ). (3.11)

– 7 –
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This region starts participating at O(
√

λ):

∫

dDk

(2π)D
dDl

(2π)D
1

(2k · p) ((k + l)2 − λ) (l2 − λ)2

=
−1

(4π)D
2−2ǫπΓ

(

ǫ − 1
2

)

Γ
(

2ǫ − 1
2

)

Γ(ǫ)
λ

1
2
−2ǫ.

(3.12)

By comparing these results to (3.7) and (3.8) we note that (3.10) and (3.12) correspond to

definite poles in the Mellin-Barnes representation i.e. at s = 0 and s = 1/2− 2ǫ. By (2.17)

and (2.23) we can calculate the coefficients of λ0 and λ
1
2
−2ǫ in the λ-expansion of I1 and

I2 numerically. This is a non-trivial test that we have not forgotten a contributing region,

which is in general a problem of method of regions.

We normalize our integrals by multiplication with (exp(γE)/(4π))2ǫ and obtain from

the solution of (3.6) the analytical expansion in λ and ǫ:

I1 =
1

(4π)4

[

− 1

2ǫ2
− 5

4ǫ
− 11

8
− 5π2

12
+ ǫ

(

55

16
− 25π2

24
− 11

3
ζ(3)

)

+ λ

(

− 1

ǫ2
+

−3 + 2 ln λ

ǫ
− 5 +

π2

2
+ 6 ln λ − (ln λ)2

+ ǫ

(

−3 +
3π2

2
+

26

3
ζ(3) +

(

14 +
π2

3

)

ln λ − 3(ln λ)2 +
(ln λ)3

3

))

+ λ
3
2 ǫ

−16π2

3
+ O(λ2)

]

+ O(ǫ2)

I2 =
1

(4π)4

[

− 1

2ǫ2
+

−1 + 2 ln λ

2ǫ
+

1

2
+

π2

4
+ 2 ln λ − 1

2
(ln λ)2

+ ǫ

(

11

2
+

11π2

12
+

13

3
ζ(3) +

(

4 +
π2

6

)

ln λ − (ln λ)2 +
1

6
(ln λ)3

)

+ λ
1
2 (−4ǫπ2)

+ λ

(

− 1 − π2

3
+ ln λ − 1

2
(ln λ)2

+ ǫ

(

11 +
2π2

3
− 4ζ(3) − 3 ln λ − 1

2
(ln λ)2 +

1

2
(ln λ)3

))

+ λ
3
2 ǫ

4π2

3
+ O(λ2)

]

+ O(ǫ2).

(3.13)

On the other hand our numeric method of section 2 gives

I1 = 10−4

[

− 0.20

ǫ2
+

−0.50

ǫ
− 2.2 − 4.5ǫ

+ λ

(

− 0.40

ǫ2
+

−1.2 + 0.80 ln λ

ǫ
− 0.026 + 2.4 ln λ − 0.40(ln λ)2

+ ǫ
(

8.9 + 6.9 ln λ − 1.2(ln λ)2 + 0.13 ln λ)3
)

)

− 21.ǫλ
3
2 + O(λ2)

]

+ O(ǫ2)

– 8 –
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I2 = 10−4

[

− 0.20

ǫ2
+

−0.20 + 0.40 ln λ

ǫ
+ 1.2 + 0.80 ln λ − 0.20(ln λ)2

+ ǫ
(

7.9 + 2.2 ln λ − 0.40(ln λ)2 + 0.067(ln λ)3
)

− 16.ǫλ
1
2

+ λ

(

− 1.7 + 0.40 ln λ − 0.20(ln λ)2

+ ǫ
(

5.1 − 1.2 ln λ − 0.20(ln λ)2 + 0.20(ln λ)3
)

)

+ 5.3ǫλ
3
2 + O(λ2)

]

+ O(ǫ2),

(3.14)

which is consistent with (3.13).

4. Conclusions

By combining sector decomposition with Mellin-Barnes techniques I developed an algo-

rithm for power expanding Feynman integrals, where the coefficients in the expansion are

given by finite integrals. Even if these integrals cannot be evaluated numerically, we can

read off, which powers of the expansion parameter contribute and up to which power the

logarithms occur. This non-trivial information provides the correct ansatz for solving the

set of differential equations that determine the Feynman integrals.

Another application of the presented algorithm is testing method of regions numeri-

cally. We have seen that every region, that has a unique scaling in the expansion parameter,

corresponds to a definite power in the Mellin-Barnes expansion. So it can be tested sep-

arately. For method of regions it is often an involved problem to make sure not to have

missed or counted twice any region. This algorithm provides a test of method of regions

that is independent of any power counting argument.
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